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DYNAMIC MODELLING OF RAILWAY TRACK:
A PERIODIC MODEL BASED ON A GENERALIZED

BEAM FORMULATION
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Dynamic modelling of railway track is a vital step in view of traffic noise reduction.
Considering the track as a periodic structure, the classical properties and methods
associated with one-dimensional periodic structures are recalled, then applied to the
problem within the framework of the Euler–Bernouilli and Timoshenko beam theories.
These methods turn out to be insufficient when compared with experimental data, especially
concerning the lateral receptance spectrum. Therefore, an extended beam model is
developed, essentially based on the notion of generalized cross-section displacements.
Finally, the application of this theory to railway track results in a significant improvement
in the computed spectrum, and suggests directions for further investigations.
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1. INTRODUCTION

1.1.   

Today, the problem of noise reduction of railway track is attracting growing interest
in many industrial countries. At the current commercial speeds of modern trains—about
300 km/h—it is generally assumed that about 70% of the traffic noise originates from the
wheel–track couple, the rest being generated by aerodynamic effects. Because of the
predominance of the former factor, the efforts of engineers concerned with track noise
reduction are essentially devoted to it.

Concerning the wheel–rail noise, rough estimations show that half originates from track
vibration, while the other half is produced by wheel deformation. To reach an
acceptable decrease in global noise, both components are analyzed simultaneously by
engineers. Actually, of these two aspects, track vibration appears to be the most difficult
to model, because the phenomenon is complex in itself. It has generally been found that
a direct finite element (F.E.) analysis of the track structure does not provide sufficiently
accurate results for the dynamics. For this reason an important effort has been devoted
in the past to a theoretical investigation of the problem. Several approaches are now
available. The present paper represents a continuation of this research, in order to improve
the physical representativeness of the models.

1.2.   

There are several difficulties involved in dynamic track modelling. The rail by itself has
a complex geometry (see Figure 1) which presents most of the coupling phenomena that
exist in classical beam theory; i.e., torsional, bending and shearing deformations. Another
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Figure 1. The cross-section of the rail (dimensions in mm).

difficulty is related to the presence of repetitive supports—sleepers, pads and
ballast—especially as the dynamic characteristics of those elements are generally known
with poor accuracy. Finally, it is suspected today that the deformation models of classical
beam theory may not be appropriate, especially in the high frequency range, to provide
a satisfactory representation of rail vibration.

In short, two different paths have been followed by previous researchers who have
investigated the problem. In the first approach, the representation of the track has been
based on infinite beam models; while in the second approach the model has been derived
from the theory of periodic structures.

1.3.    

The rail is considered as an infinite beam, and its dynamic behaviour can be studied by
the classical methods of wave propagation analysis. In this approach the supports can
either be ignored or included in the model in the form of a continuous multi-layer
foundation, defined by a set of mass, stiffness and damping densities. After the work of
Remington [1] and Grassie [2], both based on the Euler–Bernouilli beam model, an
extensive investigation was carried out by Thompson [3], who used a F.E. approach to
study a 2·08 m rail length representing the infinite beam. With computation of the normal
modes of the rail, Thompson showed that at low frequencies—below 1500 Hz—the
vibration modes of the structure could be recognized as the classical deformation modes
of beam theory: i.e., bending, torsional and longitudinal modes. On the other hand, he
found that, when increasing the frequency above 1500 Hz, the mode shapes changed
progressively so as to incorporate more and more in-plane deformation of the
cross-section. For instance, at high frequencies, bending modes progressively incorporate
foot flapping effects, while the torsional mode incorporates more and more web bending
effects.

1.4.    

The second approach is based on the theory of wave propagation in periodic structures.
The general problem has received great attention from various authors in the past.
Physicists were the first to work in this field, applying it to wave propagation problems
in crystalline structures [4]. Ultimately, their work was generally oriented towards two- or
three-dimensional structures.

Various applications to one-dimensional structures such as stiffened plates [5, 6], skin-rib
structures [7, 8], truss beam structures [9–11], multi-supported beams [12, 13] and other
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periodic structures have furnished researchers with many opportunities for investigation
in the past. In this field, Mead’s contribution deserves special attention. In his early papers
[12–15] he clarified the stop-band/pass-band phenomenon, and investigated the relations
between the pass-band frontier frequencies and the single element eigenfrequencies. Then
he thoroughly studied the question of inter-element energy transfers, and finally proposed
a clear analysis of the relations between the pass-bands of the infinite system and the
natural frequencies of finite systems [8].

Another contribution, which brought a different insight into the problem, has come in
recent years from Pierre. He has made systematic use of the inter-element transfer matrix
[11], which was found later to present real advantages in terms of generality and
practicality. The present paper is essentially based on this fundamental notion. In recent
papers, he has widely investigated the question of quasi-periodicity [10, 11], using
probabilistic theories, and thoroughly discussed the localizing effect of near-periodicity
[16, 17].

Heckl [19] has investigated applications to track vibration while allowing for the
presence of discrete supports, and then Thompson [3] adapted the method to a F.E.
approach. While including a double-layer continuous foundation, he reached results that
essentially confirmed the conclusions of the first approach, and provided additional useful
data concerning the role of certain parameters, such as support characteristics and
damping coefficients.

1.5.        

The drawbacks of the previous methods are a consequence of their inherent nature. The
pure analytical method is naturally restricted to the classical models of beam deformation,
and so cannot take into account all of the deformation patterns that are expected to be
found in the present case. Moreover, the classical coupling effects of the beam theory, such
as shearing and torsional interactions in relation to the location of the shear center, are
difficult to include in the wave equation, whereas they are quite relevant to the specific
geometry of the rail case.

Even with the improvement of the periodic structure theory, the F.E. approach leads
naturally to heavy computations because of the necessary longitudinal discretization.
Moreover, our practical experience in the field has revealed that, due to the presence of
near-field waves of very short wavelength, numerical difficulties can hardly be avoided with
this method.

The purpose of the present paper is to develop a generalized approach to the problem,
that will remain within the framework of periodic structure theory, while retaining the
advantages of the analytical method and some of the advantages of the F.E. method. As
we will see, the advantages of the analytical method are obtained by using a Fourier
decomposition in the longitudinal direction, while the advantages of the F.E. method are
drawn from a discretization of the cross-sectional displacements.

So far, our method could be defined as a ‘finite strip method’’. However, due to the F.E.
discretization of the cross-section, we would be led once more to matrix equations of large
dimensions, involving the same difficulties as above. For this reason, another concept has
been introduced in order to reduce the spatial dimensions of the displacement field. On
the assumption that the deformation of the cross-section can be approximately described
from a reduced number of deformation patterns called ‘‘cross-section modes’’, the wave
equations are developed on this reduced basis, and so the periodic analysis is finally made
using a small sized matrix equation.

Although the final purpose of the method is to provide a precise description of the
vibrational behaviour of a track, by including as many ‘‘cross-section modes’’ as necessary
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Figure 2. The definition of the periodic track element and reference frame.

in the model, the aim of this first paper will not be so ambitious. First, we intend to
develop a mathematical formulation of what we call our hybrid approach, and then
show its equivalence with the previous methods used in the literature. This will be the
content of sections 2 and 3. After a short review of the theory of periodic structures in
section 2, the direct application of this theory to the track structure, within the framework
of the Euler–Bernouilli beam model, will be presented in section 3. At this point the
insufficiency of the Euler–Bernouilli model, even with the added improvement of the
Timoshenko factors, will be established. The truly new concepts of our method will
be introduced in section 4, with the notion of ‘‘cross-section modes’’, and the
elasto-dynamic equations implied by this concept will be developed. Finally, the power of
the method will be demonstrated by means of an example including only two additional
modes.

2. THE ONE-DIMENSIONAL PERIODIC MODEL

In this section, some useful notions and formulas of the one-dimensional periodic
structure theory will be recalled. Although these notions have a quite general value,
for the sake of brevity they will be presented in the framework of the railway track
application.

2.1.      

The transfer matrix method was chosen since it leads to a very clear presentation
of wave propagation phenomena in periodic structures. This section is devoted to the
derivation of the track span transfer matrix. The developments refer to Figures 1 and 2,
which describe the structure and the co-ordinate system. Note that the longitudinal
co-ordinate will be indifferently labelled z or x3 throughout the text.

In this approach, a vector U of independent variables must be chosen and defined at
the junctions of the periodic elements. The number of these variables is related to the
number of degrees of freedom (d.o.f.) which have been selected to represent the
displacements, and also to the order of the differential equation of propagation, which in
continuous media is equal to two. This set of variables can be looked upon as a ‘‘state
vector’’ in relation to the spatial variable z. Generally, several equivalent choices are
possible for this state vector. The state vector can, for instance, include pointwise
displacements defined at the span junctions, their spatial derivatives, forces exchanged at
these junctions, or various combinations of the above. In the case of track modelling,
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following Pierre [17], we will choose as a state vector the coupled end displacements of
the span:

Un =$un−1

un %. (1)

In equation (1) un−1 and un denote, respectively, the displacement vectors of the end left
and end right cross-sections of the nth rail span. At this point, the word ‘‘displacement’’
must be understood with a general meaning, and can include nodal displacements, global
rotations or parameters of some displacement function.

Under the classical hypotheses of linearity and perfect periodicity, a matrix T can be
defined so that the wave propagation equation takes the form

Un+1 =TUn . (2)

This matrix is generally called the ‘‘transfer matrix’’ between consecutive spans. Clearly,
its dimension is equal to the size of the state vector: i.e., twice the number of coupling
co-ordinates defined at the junctions.

We will show at once how this transfer matrix can be built up for the railway track case.
Here, the periodic structural element is composed of two consecutive half-sleepers,
including their section of ballast and pads, and the embedded rail span (see Figure 2).

The end cross-sections of a rail span define its junctions with the adjacent spans, and
some forces are exchanged between spans through these junctions. Let us denote by fn a
vector representing the forces that the rail span n+1 exerts on the rail span n through
the junction n (see Figure 3). Again, the word ‘‘force’’ must be understood with a general
meaning, these forces being defined as the dual variables of the displacements introduced
above.

Let us assume that the impedance matrix Z of the rail span, i.e., the matrix which relates
the displacement vector of the span ends to the force vector applied on them, is known.
This impedance matrix can be obtained in various ways through the use of analytical
mechanics, finite element computations or other specific methods. Two examples of the
development of such a transfer matrix will be presented in sections 3 and 4.

Thus, the inpedance equation of the rail span can be written:

$−fn−1

fn %=$Z11

Z21

Z12

Z22%$un−1

un %, (3)

with the classical symmetry property

Z21 =ZT
12.

Figure 3. The force and dispacement vectors associated with coupling sections.
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At a two-span junction, the force equilibrium equation must take into account the response
of the support. We will assume that this response is symmetric with regard to the two
adjacent spans, so that the periodic element is also symmetric. While not essential, this
property—which is obviously fulfilled in the railway track case—entails interesting
properties in vibration which will be briefly recalled in section 2.2

With account taken of the half-support impedances H/2, the impedance equations
applied to spans n and n+1 result in

$−fn−1

fn %=Z*$un−1

un %, $−fn

fn+1%=Z*$ un

un+1%, (4)

with

Z*=$Z11 +H/2
Z21

Z12

Z22 +H/2%. (5)

The identification of the two expressions for fn in equations (4) and (5) leads to the recursive
equation

Z21un−1 + (Z11 +Z22 +H)un +Z12un+1 =0. (6)

From the definition of T in equation (2), the transfer matrix is found:

T=$ 0

−Z−1
12 Z21

I

−Z−1
12 (Z11 +Z22 +H)%. (7)

Therefore, knowing the impedance matrices of the support H and of the rail span Z, we
can completely determine the transfer matrix between adjacent spans.

2.2.  

The eigenanalysis of the transfer matrix considerably clarifies the picture of free wave
propagation, and leads to the definition of a set of uncoupled waves called ‘‘characteristic
waves’’.

Let us consider a wave generated at the cross-section 0 travelling throughout the
structure. Equation (2) results in

Un =TnUo . (8)

With L defined as the diagonal matrix of the eigenvalues li and F the square matrix
of the eigenvectors Fi of T, this equation can be rewritten in the uncoupled form:

Vn =LnV0, (9)

with

Vk =F−1Uk , L=F−1TF. (10)

A pair (li , Fi ) defines a characteristic wave of the structure. The vector Fi defines the
shape of the characteristic wave i over the cross-section, while the complex eigenvalue li

defines the wavelength by its argument and the attenuation in the z-direction by its
modulus. In a mechanical structure, it can be proved [10] that these eigenvalues appear
in inverse pairs (li , 1/li ), corresponding respectively to left travelling and right travelling
waves. In addition, if the matrix T is real—which depends on the damping hypotheses—the
eigenvalues occur either in real values or in complex conjugate pairs.
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The eigenvalue li is usually written in the exponential form li =exp (mi ). For a wave
travelling in the positive z-direction, the real part of the exponent mi must be negative, and
has the meaning of an attenuation factor. On the other hand, the imaginary part has the
meaning of a phase shift between two consecutive spans. As has been shown by several
authors, a non-zero real part corresponds, on the frequency axis, to stop-bands, while a
pure imaginary exponent corresponds to pass-bands. An interesting property was shown
by Mead [15, 8] whereby, in case of a symmetric periodic element, the frontier frequencies
belong to the set of resonance frequencies of the single element with specific boundary
conditions. In a symmetric deformation of a span, a group of d.o.f.—lateral displacements,
for instance—are symmetric: let us call these symmetric d.o.f. The others are—lateral
rotations, for instance—antisymmetric: let us call these antisymetric d.o.f. The boundary
conditions corresponding to the frontier frequencies are: (i) symmetric d.o.f. are locked
while antisymmetric d.o.f. are free; (ii) antisymmetric d.o.f. are locked while symmetric
d.o.f. are free. The first case corresponds generally to the well known pinned–pinned
frequency. This property will become very useful for practical interpretations of the
numerical results.

From this notion we can understand precisely how motion propagates along the track.
Let us expand the state vector of the nth span on the basis of the eigenvectors Fi :

Un =$un−1

un %=FV. (11)

From the property of eigenvectors, we have also

Un+1 =$ un

un+1%=FLV. (12)

Now let us split the matrices F, L and the vector V as follows:

F=$8'R

8R

8'L

8L%, L=$l l−1%, V=$ab%, (13)

where the superscripts R and L denote the right and left eigenvectors, associated
respectively with the right and left travelling waves. The submatrix l is a diagonal matrix
including only the modulus eigenvalues less than one (right travelling waves).

From equations (11) and (12) we can write

un = ai8
R
i + bi8

L
i , un+1 = liai8

R
i +(1/li )bi8

L
i , (14a, b)

where implicit summation with respect to index i is assumed. Equation (14a) expresses the
displacements of the junction n as a combination of right and left travelling waves.
Equation (14b) shows how the right travelling waves decrease, while the left travelling
waves increase in the positive z-direction.

These equations can be directly rewritten in terms of forces. By using equations (4) while
taking into account equations (14), it is easy to find that

fn = aig
R
i + big

L
i , fn+1 = liaig

R
i +(1/li )big

L
i , (15a, b)
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where the following notation has been used:

gR
i =−0Z11 +

H

2
+ liZ1218R

i =01
li

Z21 +Z22 +
H

218R
i , (16a)

gL
i =−0Z11 +

H

2
+

1
li

Z1218L
i =0liZ21 +Z22 +

H

218L
i , (16b)

The equations (16) must be understood to be without summation on the index i.

2.3.  

In experimental terms, an excitation F(t)—generally a hammer strike—is applied at
some point P, the measured response u(t) being the displacement of another point Q on
the rail. It is thus necessary to know the transfer function—the receptance—between P and
Q. This function can be easily determined from the dynamic equilibrium of the beam
length comprised betwen these points. In the case in which P and Q belong to the same
cross-section, this beam length is reduced to an infinitesimal slice of rail around the point.
This procedure leads to a relation u=HPQ (v)F. The derivation of the function HPQ (v)
is detailed in Appendix A, in the case in which P and Q are identical. The reader can easily
extend the method to the cases in which P and Q are distinct.

3. MODEL BASED ON THE CLASSICAL BEAM THEORY

In this section the previous formulation will be applied to a real case. The transfer matrix
will be built according to the classical Euler–Bernouilli and Timoshenko models, and for
validation, the data set will be taken from the literature. For an experimental validation,
another data set will be used, for which experimental measures are available.

3.1.      

As was shown above, the transfer matrix of the track span is built from the impedance
matrices of the rail span and supports. Here, the impedance matrix of the rail span is
developed analytically by using a classical method [18]. Two models are generally used.

(1) Euler–Bernouilli beam. In this model one assumes that the cross-sections remain
plane and orthogonal to the beam mean line. Shearing effects are neglected in this model.

(2) Timoshenko beam. This model takes into account the shearing effects through a
modification of the strain energy expression. This modification leads to the notion of
reduced section and the classical coefficients associated with it.

The torsion phenomenon can be incorporated into these models through the
introduction of a torsion modulus J.

Let us remark that, in these models, the degrees of freedom (d.o.f.) of the rail
cross-section are the two transverse displacements and the three rotations of the section.

Concerning the lateral vibration, a problem arises. How can the classical coupling effects
between shearing and torsional effects be accounted for in relation with the location of
the shear center? Because the classical beam models do not have a pure kinematic origin,
these effects cannot be easily integrated within a consistent theory. For the time being,
these coupling effects will be ignored, but this important question will be the key point
of section 4.

The development of the impedance matrix, starting from the equations of motion, is
standard. The method is recalled in Appendix B.



     539

From the impedance matrix, a transfer matrix of size 10×10 can be assembled as in
equation (7).

3.2.     

When we applied the theory to real data, we immediately encountered a numerical
problem, related to the very nature of the mathematical equations.

The transfer matrix T defined in equation (7) is non-symmetric. The computation of its
eigenvalues and eigenvectors can be performed by using some classical algorithms of
eigenanalysis. However, due to the existence of inverse eigenvalues, the matrix T is liable
to be ill-conditioned, even in ordinary situations. For instance let us assume that the
(dimensionless) lowest eigenvalue lies in the 10−8 range, which happens currently for a
near-field wave and is probably of little physical interest. Then a 108 range eigenvalue
necessarily exists, corresponding to the wave in the opposite direction. Therefore the
eigenvalue spectrum covers a 16-digit range, which entails an ill-conditioned matrix, and
therefore ill-determined eigenvectors.

In the case of a railway track, using the simplest rail model with the current mechanical
characteristics of rail and supports, the eigenvalue spectrum was found to cover a 14-digit
range. When working on a 64-bit computer, numerical problems were encountered beyond
a frequency of 2300 Hz.

Various methods can be used to cope with this problem. The most natural one would
be to take advantage of the structure of the characteristic polynomial. Because of the
existence of pairs of inverse roots, the degree 2n characteristic polynomial can be reduced
to a degree n polynomial of the unknowns si = li +1/li . The roots of this polynomial
provide the eigenvalues through a simple second degree equation, and then the matrix of
eigenvectors through a linear system. The drawback of the method is that it does not allow
the use of classical eigenanalysis packages. Therefore another method was developed by
forming the auxiliary matrix T*=T+T−1, the eigenvalues l*i of which are related to two
inverse eigenvalues li of T according to l*i = li + ln+ i = li +1/li , and so occur in pairs
of equal values.

It can be objected that the supposedly ill-conditioned matrix T will prevent its inverse
T−1 from being computed correctly. Actually, for the matrix T defined by equation (3),
its inverse matrix can be formally expressed as

T−1 =$−(Z11 +Z22 +H)−1Z21

I

−(Z11 +Z22 +H)−1Z12

0 %,

As the submatrices Z11, Z22 and H are not usually ill-conditioned, the inversion can be
accurately performed.

The eigenvectors of T correspond in pairs Ci =(Fi , Fn+ i ) with the eigenvectors of T*
to form n eigenspaces of dimension 2 associated with the n double eigenvalues l*i . Of
course, a standard eigenanalysis computer code provides two arbitrary independent
combinations F'i and F0i of Fi and Fn+ i , associated with the double eigenvalue l*i , so that
a problem occurs when restoring the original pairs Ci .

Upon expanding the eigenvector Fi on the basis F'i , F0i , as Fi = jF'i + hF0i , the
problem results in the determination of the complex components j and h. With Fi written
as eigenvector of T,

j(T− li I)F'i + h(T− li I)F0i = 0, (17)
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Figure 4. The support models for computation: (a) model with two simple springs and one mass; (b) model
with four multi-directional springs of types (T) and (M); (c) the principle of the three-directional spring of type
(T); (d) principle of the mixed longitudinal–rotating spring of type (M).

j and h can be determined proportionally from a single line of equation (17). Actually,
because of the frequent occurrence of near-zero lines, they are better determined after
making the dot product of equation (17) by F'i or F0i .

In practice, the modulus eigenvalues less than one can be considered first, their
corresponding eigenvectors being determined by the previous method. They represent
waves travelling in the positive z-direction—let us say, right travelling waves—the left
travelling waves being associated with the inverse eigenvalues. The corresponding
eigenvectors, in the case of symmetric periodic elements, can be deduced from the right
travelling waves by using simple rules of symmetry. In the terminology of section 2.2, the
symmetric d.o.f. u1, u2 and u3 are taken with the same sign, and the antisymmetric d.o.f.
u3, u1 and u2 are taken with the opposite signs.

3.3.  

From the above theory, a first sequence of computations was performed to validate the
method by comparison with some results from the literature and with experimental
measurements delivered by the industrial partner.

The first data set used was identical to that given by Heckl [19]. The rail characteristics
are the following: section 7·484×10−3, vertical and lateral inertia 49·932×10−3 and
2·971×10−3, and vertical and lateral Timoshenko modulus 0·6 and 0·8. The support
reduces to a simple spring–mass–spring system (see Figure 4(a)) with the following
characteristics: mass 162 kg, spring stiffnesses (N/m) 3·8×108 and 0·75×108. The
computational option is the Timoshenko model.

Let us first consider the characteristic waves. Due to the nature of the Timoshenko
model, vertical, lateral and torsional waves are uncoupled in the analysis. The spectra of
the attenuation factors which are found for the two vertical waves are shown in Figure 5.



5000

6

Hz

m
–1

1000 2000 3000 4000

5

–1

0

1

2

3

4

0

     541

These results can be compared with the similar curves presented in reference [19]. As
expected, results are strictly identical. If we now consider the receptance spectrum of the
track for a vertical excitation applied on the top of the rail in front of a support (not
drawn), once more it is found that the computed spectrum exactly matches the curve given
in reference [19].

At this point, the present model and the Heckl model [19] are strictly identical. In fact,
they differ only in their algebraic organization. However, the advantages of the transfer
matrix method are clear. They were largely outlined by Pierre et al. [11, 17]. The impedance
matrix of the periodic element is developed independently, and so can take into account
any sophisticated features of the mechanical model. For example, the extended model
developed in section 4 will naturally take its place in the model. Moreover, as has been
shown by several authors, the transfer matrix method can easily be adapted to closely
related problems; for instance, in the case of a finite number of elements, or in the case
of slightly varying elements.

To compare with experimental results, another data set is introduced, for which an
experimental analysis is available. The rail characteristics are unchanged, but the transfer
matrix of the support is enriched (see Figures 4(b)–(d)). Sleepers and pads are represented
by a set of three springs (T), each one having three-directional longitudinal effects (see
Figures 4(b), (c) and (d)). The distance of the exterior springs to the symmetry axis is
4·37 cm. The stiffness and damping coefficients of these springs in the lateral, vertical and
axial directions are (2·0×109, 0·1), (4·5×108, 0·8) and (7·5×108, 0·1). The ballast is
represented by a central spring (M) having three-directional longitudinal and rotational
effects. The stiffness and damping coefficients of this spring in the lateral, vertical and axial
directions are, in translation, (7·5×107, 0·4), (8·5×108, 0·4) and (7·5×107, 0·1) and, in
rotation, (8·0×108, 0·4), (8·5×108, 0·4) and (9·5×107, 0·1). The mass and the three
principal inertia of the ballast are 122, 0·635, 1·322 and 1·144 respectively (S.I. Units).

Let us assume a vertical excitation applied at the top of the cross-section in front of a
support. In Figure 11(b) (of section 4, as are Figures 12–14) is shown the computed
accelerance spectrum, while in Figure 12(b) is shown the experimental one in the same
case. Globally, these results present a satisfactory agreement, especially in the low
half-frequency range. However, a detailed examination shows that the computed spectrum

Figure 5. The attenuation factors of the two vertical characteristic waves: the case of a Timoshenko model.
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cuts off some high frequency peaks–beyond 1200 Hz—that exist in the experimental one.
This is a first element to suggest some insufficiency of the model.

Now the excitation is applied at the same point in the lateral direction. The computed
spectrum for a Timoshenko beam is shown in Figure 13(a), while the experimental results
are presented in Figure 14(a). Here, the two spectra present a global 10 dB difference on
the accelerance axis. Of course, the first idea is to attribute the gap to our insufficient
knowledge of the support characteristics. Actually, a large computational investigation
showed that no combination of these parameters could substantially improve the result.

On the other hand, simple modifications of the energy expression were tried in order
to incorporate the coupling effects attached to the location of the shear center. To
summarize, it was found that the incorporation of such effects could sufficiently raise the
global level of the accelerance spectrum. Unfortunately, these manipulations could not be
formalized within the frame of a consistent theory. A non-symmetric impedance matrix
was generally encountered, and finally poorly accurate results were found.

At this point, it became obvious that the poor kinematics involved in the model was
the main cause of the trouble, so that a reconsideration of the theory was necessary. In
the classical beam models, the kinematics of the beam is essentially restricted to the set
of rigid body motions of the cross-sections. Although the Timoshenko model does not have
a pure kinematic assessment, it can be interpreted as an improvement of a kinematic model
with six d.o.f.—three translational and three rotational—through the introduction of
appropriate shearing factors. On the other hand, not all modes involving cross-section
deformation—warping effects, for instance—can be directly incorporated into these
models, which generally results in structural inconsistencies and in excessive stiffness of
the model.

For these reasons, a new approach based on an enriched kinematic model was deemed
necessary. We will see that its application resulted immediately in a substantial
improvement of the results. The next part of this paper is devoted to this extension.

4. MODEL BASED ON A KINEMATIC FORMULATION

In this section, the equations of the beam deformation will be reformulated on a pure
kinematic basis. The advantage of this approach is that the basic set of rigid body modes
of the cross-section can be enriched by addition of suitable deformation modes. In this
framework, the elastodynamics of the rail will be redeveloped so as to provide the new
transfer matrix needed by the periodic analysis. Finally, the quality of the model will be
discussed from comparison with experimental results.

4.1.   ‘‘- ’’
A refined track representation necessarily involves some finite element discretization of

the rail. We have already recalled the drawbacks of the method which was followed by
Thompson [3], starting from a complete discretization of the rail span. In contrast, the
method developed below needs only discretization of the cross-section.

The basic idea of this new method lies in the intuitive notion of ‘‘cross-section mode’’.
Basically, it is assumed that, disregarding local effects, the rail’s cross-section possesses
some preferential shapes of deformation. In other words, these modes define a reduced
basis for the space of displacements of the cross-section. Obviously, the quality of the
subsequent analysis depends heavily on an optimal choice of this reduced basis.

How to obtain these modes is a question that can receive simple answers as well as
sophisticated answers. For instance, the usual theory of beams suggests a set of rigid body
modes which must necessarily belong to the reduced basis: translations and rotations of
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Figure 6. The static computational cases used to provide extra modes: (a) shearing mode; (b) torsional mode.

the x1 and x2 directions must at least be selected to represent the classical bending modes.
Longitudinal z-translation must be introduced to represent the longitudinal mode.
Conversely, these rigid body modes are sufficient to provide a satisfactory representation
of the coresponding effects.

On the other hand, it is well known that shearing and torsional patterns cannot be well
represented by the pure rigid body kinematics of the cross section, since warping is an
essential feature of these phenomena. Moreover, classical beam theory shows that these
two effects have a mutual interaction, leading to the notion of shear center. Due to the
non-symmetric nature of the rail profile under lateral loading, these aspects must be highly
relevant to the present case.

In the present paper, in addition to the development of a general methodology, the
purpose will be restricted to a correct treatment of the basic phenomena of low frequency
beam mechanics—pure extensional, bending, shearing and torsional deformations. To
ensure a correct treatment of the shearing and torsional effects, suitable additional modes
must be selected to enrich the kinematics. In the low frequency range, it can be expected
that these additional modes will not be very different from what they are in pure static
deformation. This leads us simply to extract the needed additional modes from a set of
static computations, by using a standard F.E. code.

The static F.E. computation which was performed to provide the shearing mode is
shown in Figure 6(a). A simply supported 60 cm rail length is submitted to equal end
bending moments. The shearing pattern is extracted from the displacement vector of the
mid-length cross-section. Actually, it is found that the mode can be reduced numerically
to its z-components (S mode).

The static F.E. computation which was performed to provide the torsional mode is
shown in Figure 6(b). Again, a 60 cm rail length is submitted to opposite longitudinal
moments. The torsional pattern is still extracted at the mid-length cross-section and,
consistently with the classical torsion theory, can be reduced to the z-displacements
(warping).

Obviously, the high frequency range will not be covered with the present reduced basis,
since for high frequencies the appropriate additional modes cannot be determined from
static computations. Therefore in the high frequency range a different method is needed
to complete the reduced basis. Several methods can be used to reach this target. Probably
the most powerful method would be to perform a separate analysis of the free rail
vibration, and then select a set of significant modes to form a suitable reduced basis. At
the present time, this approach is under development, and definite results are not available.
This paper will thus be restricted to a low frequency analysis. As we shall see below, the
present method was sufficient to provide satisfying results in the 0–1200 Hz range.

To summarize, we will assume that the displacement field is defined by a system of the
form

u= am (z, t)um(x1, x2), (18)
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where implicit summation with respect to the index m is assumed (see Figure 7). The
functions um(x1, x2), which are defined on the rail cross-section, represent the chosen
cross-section modes. When extracted from a F.E. analysis, they are defined for each
element by interpolation from nodal values.

A question arises as to whether this representation is mechanically acceptable; for
instance, if the condition of a free outer surface is automatically fulfilled. Actually, the
structure has, in the cross-section plane, no more degrees of freedom than the size of the
reduced basis, which is very small. In general, it is thus theoretically impossible precisely
to fulfil the surface condition in such a reduced space. Nor is it possible to fulfil in detail
all of the conditions for internal equilibrium. This explains the choice which was made
above of selecting static deformation modes, which by themselves are consistent solutions
of physical problems. The approximation introduced here is the same as in the classical
beam theory: disregarding local effects, it is assumed that the beam deformation can be
obtained, with good accuracy, from the solutions of tractional, bending, shearing and
torsional problems—solutions which depend only on the shape of the cross-section. It is
equivalent to assume that this reduced basis is sufficient to ensure, although approximately,
the physical consistency of the solution, including the free outer surface conditions, as well
as the internal equilibrium conditions.

To summarize, the modes um(x1, x2) must be drawn from consistent and representative
mechanical problems so as to be acceptable modes.

4.2.   

It was shown in section 2 that an important step towards a periodic model analysis is
the determination of the transfer matrix, which is derived directly from the determination
of the rail span impedance matrix. Because of the non-classical kinematic model (18), the
determination of this impedance matrix requires a complete reformulation of the
elastodynamics of the rail.

Equation (18) defines a displacement function by its co-ordinates am (z, t) on the set of
basic functions. Note that, similarly, a field of forces f(x1, x2, z, t) can be characterized by

Figure 7. The wavenumbers of the propagating waves of the free infinite rail; (a) vertical bending mode; (b)
lateral bending mode; (c) torsional mode.
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a set of dual co-ordinates bm (z, t). Let us introduce the virtual work per unit length of the
beam dW(z, t):

dW(z, t)=gg
s

f(x1, x2, z, t) du(x1, x2, z)dS.

The force co-ordinates bm (z, t) follow from equation (18):

dW(z, t)= dam (z, t) gg
s

f(x1, x2, z, t)um(x1, x2)dS= dam (z, t)bm (z, t). (19)

The development of elastodynamics is classical in continuum mechanics. The specificity
is that the longitudinal co-ordinate z must be separated from the others in the equations.
Upon assuming a virtual displacement defined by the function du= dam (z)um(x1, x2), and
denoting by spq and opq the stress and strain tensors in the body, the associated virtual work
can be computed from

dW=ggg
v

sijdoij dV, (20)

where V denotes the volume of the body.
In the following development, it will be more convenient to refer to the z co-ordinate

with an indexed variable, by assuming z= x3 (see Figure 3).
The strain expressions can be written as

oij = 1
2am (um

i, j + um
j,i ), i, j=1, 2,

oi3 = o3i = 1
2(amum

3,i + a'mum
i ), i=1, 2,

o33 = a'mum
3 , (21)

where the notation f,i denotes the derivative of the function f with respect to the xi

co-ordinate, and a' the derivative of the function a(z, t) with respect to z.
The stress tensor is obtained from the Lamé equation sij = ludij +2moij , where l and m

are the Lamé coefficients, dij is the Kronecker symbol and u is the first invariant of the
strain tensor. From equation (21) we find that

sij =[ldijum
p,p + m(um

i, j + um
j,i )]am + ldijum

3 a'm , i, j=1, 2,

si3 = s3i = mum
3,iam + mum

i a'm , i=1, 2,

s33 = lum
p,pam +(l+2m)um

e a'm . (22)

Let us form the equilibrium equation for a finite length (0, L) of the beam. Upon using
equations (21) and (22) in equation (20), the virtual work of internal forces can be written
as

dWint = dW1 + dW2 + dW3 + dW4, (23)
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with

dW1 =Amn g
L

0

am (z, t)dan (z)dz, dW2 =Bmn g
L

0

a'm (z, t)dan (z)dz,

dW3 =Cmn g
L

0

am (z, t)da'n (z)dz, dW4 =Dmn g
L

0

a'm (z, t)da'n (z)dz, (24)

where the coefficients Amn , Bmn , Cmn and Dmn are expressed, from equations (21) and (22),
as

Amn = 1
2 gg

s

{[ldijum
p,p + m(um

i, j + um
j,i )][un

i, j + un
j,i ]+ mum

3,iun
3,i} dS,

Bmn =Cnm = 1
2 gg

s

{ldijum
3 (un

i, j + un
j,i )+mum

1 un
3,i} dS,

Dmn = 1
2 gg

s

{mum
3,iun

1 +2lum
p,pun

3,i} dS. (25)

Integrating the two last terms in equation (23) by parts leads to

dWint =g
L

0

[Amnam (z, t)+(Bmn −Cmn )a'm (z, t)

−Dmna0mn (z, t)]dan (z)dz−V n
0 (t)dan (0)+V n

L (t)dan (L), (26)

with

V n
0 (t)=Cmnam (0, t)+Dmna'm (0, t), V n

L (t)=Cmnam (L, t)+Dmna'm (L, t). (27)

Hence the dynamic equation splits into the following relations:

Amnam (z, t)+(Bmn −Cmn )a'm (z, t)−Dmna0m (z, t)= bn (z, t), (28)

V n
0 (t)=−bn (0, t), V n

L (t)= bn (L, t). (29)

At the span ends (see Figure 3), the generalized force vector b(b1, b2, . . . , bN ) represents
the forces associated with end faces. Dropping the indexes so as to form the corresponding
vectors and matrices, we can write

−f0(t)= b(0, t)=V0(t)=Ca(0, t)+Da'(0, t),

fL (t)= b(L, t)=VL (t)=Ca(L, t)+Da'(L, t). (30)

If the rail length is free of external forces (free wave propagation equation), the right side
of equation (28) includes inertial forces only:

bn (z, t)=Mmnam (z, t), (31)
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with

Mmn = r gg
s

um(x1, x2)un(x1, x2)dS. (32)

Taking the Fourier transforms with respect to z, and then the Fourier transforms with
respect to t of the two sides of equation (28), yields the free wave propagation equation
in the form

[A−v2M+jk(B−C)−k2D]a= 0, (33)

where A, B, C, D and M denote the matrices defined in equations (25) and (32), a the vector
of Fourier transforms am of displacement co-ordinates and k a complex factor
characterizing the wavelength and attenuation.

This equation defines a classical problem of eigenvalues and eigenvectors. Because of
the skew-symmetric nature of the matrix B−C, it is easy to show that, if a has dimension
n, the 2n eigenvalues occur in opposite pairs.

With equation (33) written in the form

$ 0

D−1(v2M−A)
I

D−1(C−B)%$ a

jka%=jk$ a

jka%, (34)

k and a are found from eigenanalysis of the left side real matrix. Let ki be a complex value
and let a*i be the associated vector derived from equation (34); any solution wave can be
defined by its co-ordinates ap :

a(z)= apa*p ejkpz, (35)

where a(z) denotes the Fourier transform with respect to time of the function a(z, t). This
notation will be used systematically below, along with any time dependent function
g(x, y, . . . , t): its Fourier transform is denoted by g(x, y, . . . ), by simply dropping the
t variable.

4.3.      

Now the construction of the span impedance matrix follows the consideration of end
conditions. From equation (35), the end displacement co-ordinates are defined on the
eigenvector basis by

a(0)= apa*p, a(L)= ap ejkpLa*p,

a'(0)= apkpa*p, a'(L)= apkp ejkpLa*p. (36)

The first two equations form a 2n order system which can be solved in ap . The result is
then carried into the last two equations to give the relation

$a'(0)
a'(L)%=G$a(0)

a(L)%.
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Then, from equation (30), the impedance matrix Z is found:

$−f0

fL %=Z$a(0)
a(L)%. (37)

This impedance matrix will be used to form the transfer matrix (7), and the receptance
function defined in section 2.3. These calculations follow exactly the same development
as in section 2.

4.4.     

To build the transfer matrix of the track span, the impedance matrix of the support is
needed. This transfer matrix must also be expressed in terms of the generalized
displacements of the corresponding rail junction and their associated forces. All supports
being assumed identical, the support 0 can be considered. Let us assume that its impedance
matrix has been determined independently by means of experiments, spring–mass models,
or both, and reduced to an expression on its median line S: f=Hu. From equation (18),
the virtual work of f in a virtual displacement of the frontier has the form:

f · du=$gS

[Hum (PS )] · un (PS )dS%am (0, t)dan (0).

This expression defines the generalized co-ordinates of the response. Hence the support
impedance is defined by the matrix

Hmn =gS

[Hum (PS )] · un (PS )dS, (38)

which can be readily carried into the span impedance matrix (5).

4.5.  :   

The above method is now applied to the railway track case. The mechanical
characteristics are given by the second data set of section 3.3. First, we will examine some
aspects of the propagating free waves.

In the above model, free waves were encountered at two levels. A set of free waves and
wavenumbers was determined in section 4.2, following the elastodynamic formulation.
They represented the characteristic waves of the infinite rail without supports. Then, a set
of characteristic waves was determined for the periodic structure including supports,
providing the characteristic modes of the track and their attenuation factors.

Let us first examine the free waves of the infinite rail without supports. They are
determined from equation (34) by using a model including rigid body modes—translations
u1 and u2 and the three rotations—and the two additional modes defined in section 4.1:
the vertical shearing mode and the torsional warping mode. The matrix equation is thus
of size 14 and provides seven pairs of solutions with opposite wavenumbers, representing
right and left travelling waves. A set of three waves in the vertical plane x1z (symmetry
plane), which will be labelled ‘‘vertical waves’’, is found to be naturally uncoupled from
the others. This set involves the u1 translation, the u2 rotation and the vertical shearing
mode. The other four waves, which will be labelled ‘‘lateral waves’’, involve the u2

translation, the u1 and u3 rotations and the warping mode of torsion.
It turns out that, of these seven waves, four have pure real wavenumbers—they

correspond to nearfield waves. Three waves have pure imaginary wavenumbers—they
represent propagating waves. The three wavenumber plots of the propagating waves are
given in Figure 7, showing classical ascending curves. The numerical values have roughly
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Figure 8. The relative compositions of the lateral propagating waves of the free infinite rail: (a) lateral bending
mode; (b) torsional mode.

the same magnitudes as those given by Thompson, although the latter takes into account
a two-layer continuous support. From inspection of the corresponding eigenvectors, the
curves can easily be labelled ‘‘vertical, lateral bending waves’’, and ‘‘torsional wave’’.
However, it must be observed that in the lateral direction the two propagating waves
appear in fact to be variable ‘‘mixtures’’ of the different basic modes. To make a valid
comparison of these ‘‘mixtures’’, there is an obvious problem of normalization. The
various mode components, for example a lateral displacement and a warping mode
coefficient, can hardly be compared through their numerical values. An ‘‘heuristic’’
normalization of the modes was performed by referring them to the highest value that they
reached throughout the results. The wave compositions obtained are shown in Figure 8
for three frequency values of 100, 1000 and 2000 Hz. It can be seen that bending and
torsional effects remain always coupled together, although in variable proportions.

Let us now examine the characteristic waves of the periodic structure, including
supports. For the vertical waves, the spectrum of attenuations, showing pass-bands and
stop-bands (not drawn), is similar to the spectrum of Figure 5, although it includes an
additional wave of high attenuation—a near-field wave—of little physical value. Thus we
have confirmation that in this case the Timoshenko beam model and the kinematic model
are equivalent. The wave vectors are also similar.

The ‘‘lateral wave’’ spectrum of computed attenuations is given in Figure 9. Here it can
be seen that the results present a rather complex organization. One mode presents a high
attenuation in the whole frequency range—a near field wave. Another mode also presents
high attenuations beyond 1000 Hz, while the other two keep median values throughout
the frequency range, with alternating stop-bands and pass-bands. Indeed, it is now not easy
to label these different waves. Due to the considerable local influence of the supports, the
waves do not have the simple organization which was found in continuous beam analysis,
and can no longer be labelled using simple terms such as bending and torsion. Actually,
the waves are uninterpretable ‘‘mixtures’’—with complex coefficients—of the basic modes.
Using the same normalizing rule as above, the wave composition is shown, in modulus,
in Figure 10 for the 100 Hz frequency. Clearly, the interpretation of this graph is
perplexing. In fact, such an interpretation is not very useful. The response of the structure
to an excitation will be reconstructed from these characteristic waves in variable
proportions, depending on the excitation shape. The most important question now is to
know whether the set of characteristic waves allows a precise reconstruction of the track
response or not.
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Figure 9. The attenuation factors of the lateral characteristic waves of the track: the case of a kinematic
four-mode model.

4.6.     

From the same experimental data set, the computed accelerances can be compared with
experimental measurements.

Let us consider the vertical and lateral accelerance plots. The excitation point is still at
the head of the rail profile, first in a vertical direction and then in a lateral direction, on
a cross-section in front of a support.

The reduced basis of displacements includes at least the global translational and
rotational modes of the cross-section. The additional modes defined in section 4.1 will be
incorporated later, and their influence will be appreciated through comparison with the
experimental results.

Let us first consider the vertical receptance spectrum. A first computation is performed
with the two rigid body modes involved in bending—a pure translation and a pure
rotation. Therefore the transfer matrix is size 4. The computed spectrum (see Figure 11(a)),

Figure 10. The relative compositions of the lateral characteristic waves of the track at 100 Hz.
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Figure 11. Vertical accelerance spectra: (a) the kinematic two-mode model; (b) Timoshenko model; (c) the
kinematic three-mode model.

when compared with the Timoshenko spectrum (Figure 11(b)) or the experimental one
(Figure 12(b)), exhibits a very similar shape: however, there is a global 100 Hz shift on
the frequency axis. The model is roughly equivalent to an Euler–Bernouilli model.

It is expected that an appropriate cross-section mode related to shearing deformation
could reduce this frequency gap. The shearing mode of section 4.1, obtained from a static
F.E. analysis, is added to the reduced basis, resulting in a size 6 transfer matrix. The
computed spectrum (Figure 11(c) or 12(a)), shows that the frequency shift has indeed

Figure 12. Further vertical accelerance spectra: (a) the kinematic three-mode model; (b) the experimental
result.
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Figure 13. Computed lateral accelerance spectra: (a) the Timoshenko model; (b) the kinematic three-mode
model; (c) the kinematic four-mode model.

disappeared, resulting in excellent agreement between the kinematic model and the
Timoshenko model (Figure 11(b)), and satisfactory agreement with the experimental data.
Therefore, at this point, the kinematic three-mode model is found to be strictly equivalent
to the Timoshenko model, without resorting to the artifice of the Timoshenko factor
correction.

Some differences compared with the experimental results remain in the lowest part of
the spectrum, but can be easily explained by the fact that the dynamic characteristics of
the supports are not well enough known. In the upper frequency range, the global level
and the main spectrum features—the place of the pinned–pinned frequency, for
instance—are found accurately. However, for frequencies above 1200 Hz, secondary peaks
exist in the experimental spectrum, which are not given by the models. These peaks denote
the existence of other modes that have not been included so far.

Now let us consider the lateral receptance spectrum. Here the main challenge remains
to fill the large gap (10 dB) existing between the lateral receptance computed with the
Timoshenko model (Figure 13(a)), and the experimental result (Figure 14(b)). At present
time the model includes four rigid body modes u1, u2, u1 and u2, and the vertical shearing
mode h. By taking into account the longitudinal rotation u3, so that the transfer function
is of size 12, a partial but insufficient improvement is obtained (Figure 13(b)). Clearly, the
torsional phenomenon is not well represented by the pure rotation, since warping effects
are allowed for in the present model.

The warping mode of section 4.1 is now added to the reduced basis (Figure 13(c)). The
transfer matrix is thus of size 14. The general level of the computed spectrum comes close
to the level of the experimental one, leading to very similar plots in the whole frequency
range. Clearly, the additional modes have provided the necessary compliance that the beam
needed to reach the proper deformation. It is striking to observe, but easy to understand
from the physical point of view, that the whole deformation was severely blocked in the
absence of the suitable degrees of freedom.
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However, a difference still remains between the two spectra in the form of a global
100 Hz shift, as was found initially for the vertical receptance. Once more, it is expected
that the trouble could be caused by the absence of the shearing compliance in lateral
displacements. Therefore, in a manner similar to the vertical receptance, a lateral shearing
mode is introduced into the model.

Unexpectedly, this task encounters specific numerical difficulties. Among the vibration
modes generated by the free dynamic equations, one mode is found to have an attenuation
factor in the 1013 range, resulting in such ill-conditioned equations that the following
calculations break down.

Actually, this numerical difficulty is of great interest. Clearly, the problem can be
attributed to the presence of near field waves of very short length. Moreover, it is to be
expected that this problem will often be encountered when introducing further additional
modes in the model. The reason is that, although these near field waves may be of little
interest from the physical point of view, their existence is a mathematical necessity for
completion of the displacement basis. For this reason, a general treatment of this situation
must be looked for. Various ideas can be submitted to overcome the difficulty. One idea
would be to express the dynamics on a reduced basis, the size of which would be less than
the space dimension, so that near field waves could be ignored. Another idea would be
to uncouple and treat separately the terms that contain the ill conditioned part of the
transfer matrix. It is difficult to guess which method has the best chance of succeeding.
An important theoretical effort has already been carried out in these directions. Despite
very encouraging elements, satisfactory results are still not available. The outcome of these
additional investigations will be reported in another paper.

Finally, by taking into account the inaccuracy of the data available for the supports,
the data set used for computation can be adjusted slightly to improve the quality of the
results. A physical argument for this operation could be that the support characteristics
are dynamic rather than static, and so depend on the frequency. Two different data sets
can thus be determined, one for the low frequency range and another for the high
frequency range. The plot of Figure 14(a) was obtained in this way, showing a better
agreement with the experimental data.

A similar analysis could have been performed for any locus of the excitation point; for
instance, at mid-span. In Figure 15 are shown the results for a lateral excitation at this
point, again at the top of the cross-section. The mechanical data set is the same as above
and computation includes the four lateral modes. Results are presented in Figure 15(a).

Figure 14. Further lateral accelerance spectra: (a) the kinematic four-mode model with data set adjustment;
(b) the experimental result.
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Figure 15. Lateral accelerance spectra for an excitation at mid-span: (a) kinematic four-mode model; (b) the
experimental result.

Again, the results can be compared with Figure 15(b), obtained from experimental
measurements, leading to the same conclusion as above.

5. CONCLUSIONS

Modelling railway track vibration can be a very powerful tool in view of reducing rail
traffic noise. In the present paper the insufficiency of the classical beam models was
emphasized, leading to the conclusion that a model taking into account some refined
deformation modes of the cross-section would be more appropriate.

In the second half of the paper, it was clearly shown that a dramatic improvement of
the results could be expected from an enriched kinematic approach. For instance, in the
vertical direction, the computed and experimental receptance spectra were brought very
close together by adding only one additional mode to the classical rigid body modes of
translation and rotation. This mode accounts for the shearing deformation and its presence
is equivalent to the Timoshenko factor. In the lateral direction, a global 10 dB gap between
the two spectra could be overcome through the incorporation of a torsional mode, and
a quite satisfactory agreement between the two curves could be reached through a slight
adjustment of the support characteristics, here considered to be frequency dependent.

Despite these very encouraging results, some localized discrepancies remain, which will
have to be dealt with in the future. For instance, the experimental spectrum exhibits high
frequency peaks which do not appear in the computed spectrum, indicating that more
modes, or perhaps span modes, have to be introduced into the model. In addition, a
remaining 50 Hz gap between the computed and measured lateral spectra confirms an
excessive general stiffness of the model, leading to the same conclusion.

In fact, the above investigations have shown that the introduction of such additional
modes, due to the presence of near field waves, could result in serious numerical difficulties.
Therefore a general investigation of this problem is looked upon as an essential step on
the way to further developments.

The next challenge now lies in an accurate representation of high frequency modes. The
problem is to determine and select the useful cross-section modes to include in the model.
A study of the free propagating waves in the rail could provide a solution. The treatment
of numerical problems could also be decisive. The theoretical difficulties are now identified
but, ultimately, the results will have to be checked against experimental data. This is a
necessary validation, and it is the only true validation.
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APPENDIX A: RECEPTANCE MATRIX AT A POINT OF THE RAIL

The receptance matrix is developed under the assumption that the applied force and the
response signals are captured at the same point P of the rail, in the same direction (see
Figure A1).
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The measured displacement u at a point P of the rail is related to the generalized
displacements us of the cross-section SP of this point by the equation

u=Dus . (A1)

This relation can be easily derived from the definition of the generalized displacements.
Similarly, the applied force F at the same point P is related to the generalized forces fs

applied on the cross-section SP by the relation:

fs =DTF, (A2)

which is derived from equation (39) and the virtual work expression.
An elementary beam slice being defined around P (see Figure A1), this slice is submitted

to the forces −fL and fR on its faces, so that for equilibrium we have

fs − fL + fR = 0. (A3)

The forces fL and fR can be expressed by using the impedance matrices of the left- and
right-hand parts of the span. These matrices have the same form as in equation (5), except
that the impedance H/2 appears in one line only, because only one side of the beam part
is concerned with the support reaction. Indexes L and R are used to indicate which part
of the beam is referenced, left or right. From the corresponding impedance equations, the
following expressions are easily derived:

fL =ZL
21un−1 +ZL

22us , fR =−ZR
11us −ZR

12un , (A4)

fn−1 =−(ZL
11 +H/2)un−1 −ZL

12us , fn =ZR
21us +(ZR

22 +H/2)un , (A5)

where us denotes for the displacement vector of section Sp .
The submatrices ZL

ij and ZR
ij are drawn from the left and right transfer matrices ZL and

ZR, which are built in the same way as the whole span transfer matrix Z.

As no external force is applied on the left-hand face of cross-section Sp , the wave system
on this side can be assumed to be a sum of left propagating waves, so that equations (14)
and (15) reduce to

un−1 = bi8
L
i , fn−1 =−big

L
i , (A6)

and, similarly, on the right-hand side of S,

un = ai8
R
i , fn =−aig

R
i . (A7)

From the system of nine equations (A3)–(A7), the six vectors un−1, un , fn−1, fn , fL and fR

can be easily eliminated. Upon gathering the column vectors 8L
i , 8R

i , gL
i , gR

i into matrices

Figure A1. A receptance computation: the definition of forces and displacements.
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8L, 8R, gL and gR, and the coefficients ai and bi into the vectors a and b, the three remaining
equations take the form

[gR +(ZR
22 +H/2)8R]a+ZR

21us = 0,

[gL +(ZL
11 +H/2)8L]b+ZL

12us = 0, (A8)

ZR
128

Ra+ZL
218

Lb+(ZR
11 +ZL

22)us = f. (A9)

Then the vectors a and b can be extracted from equation (46), so that the impedance
formulae result from equation (47):

a= hRus , b= hLus , us =W−1
s fs , (A10)

with

hR =−[gR +(ZR
22 +H/2)8R]−1ZR

21,

hL =−[gL +(ZL
11 +H/2)8L]−1ZL

12,

Ws =ZR
11 +ZL

22 +ZR
128

RhR +ZL
218

LhL. (A11)

From equation (A1) and (A2), the receptance equation becomes

u=DW−1
s DTF, (A12)

which defines the receptance matrix at point P for a load at the same point:

HPP =DW−1
s DT.

APPENDIX B: IMPEDANCE MATRICES FOR THE EULER–BERNOUILLI AND
TIMOSHENKO BEAMS

In the method, one considers separately the effects of vertical motion, lateral
motion—including both bending and shearing effects—and torsion.

The equations of free vertical motion are

EI1 14u1/1z4 − rSü1 =0, u2 = 1u1/1z, T1 =EI1 13u1/1z3,

M2 =−EI1 12u1/1z3 (B1)

for the Euler–Bernouilli model, and

GSK1 12u1/1z2 +GSK2 1u2/1z+ rSü1 =0,

EI1 12u2/1z2 −GSK1 1u1/1z−GSK1u2 + rv2I1u� 2 =0,

T1 =GSK1(1u1/1z+ u2), M2 =EI1 1u2/1z (B2)

for the Timoshenko model.
In these equations, S and I1 are the area and the vertical inertia of the cross-section,

K1 is the corresponding Timoshenko factor, T1 and M2 are the current shearing force and
bending moment under vertical bending, E, G are the Young’s and shear modulus, and
r is the mass per unit volume of the material.

The procedure to obtain the impedance matrix is similar in both cases. It involves the
following sequence, which can be easily programmed on a computer.

(1) Take the Fourier transform of the equations, just replacing X� by v2X.
(2) Look for an exponential solution, defining a characteristic wave: u1 =A exp(rz),

u2 =B exp(rz). In the Euler–Bernouilli case, the second equation is a consequence of the
first one. This step results in a set of homogeneous equations for A and B. The
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compatibility of these equations is ensured with four characteristic values of r: two real
values and two pure imaginary values.

(3) Look for solutions of the actual problem in the space of characteristic waves:

u1 =A1 exp(r1z)+A2 exp(r2z)+A3 exp(r3z)+A4 exp(r4z),

u2 =B1 exp(r1z)+B2 exp(r2z)+B3 exp(r3z)+B4 exp(r4z).

This means that the coefficients Ai and Bi must be determined so as to fulfil the end
conditions:

u1(0)= u1
0 , u1(L)= u1

L , u2(0)= u2
0 , u2(L)= u2

L ,

T1(0)=T1
0 , T1(L)=T1

L , M2(0)=M2
0 , M2(L)=M2

L .

(4) From the above procedure, a relation is found between the vectors of end
displacements and end forces:

U1 = [u1
0 u2

0 u1
L u2

L ]T, F1 = [−T1
0 −M2

0 T1
L M2

L ]T, F1 =Z11U
1.

The matrix Z11, of size 4×4 is part of the impedance matrix.
The lateral motion is analyzed in a similar way and provides a matrix Z22 which is part

of the impedance matrix.
The equations of motion in torsion are

G 12uz /1z2 + ru� z =0, Mz =G(I1 + I2)1uz /1z. (B3)

The development of the partial impedance matrix due to torsion is similar, except that the
characteristic waves have only two terms. An impedance matrix Z33 of size 2×2 is found.

Finally, assembling the impedance equations into one, and then rearranging the lines
and columns so as to gather the left end variables into one group and the right end
variables into another group, the global impedance matrix of size 10×10 is found.


